Water Budgets

6 275,44

929 206,82

ANAGEMENT

9 030,61

31 475,38

38 471,62

909,95

UCDAVIS

WATER

Union of Concerned Scientists Science for a Healthy Planet and Safer World

278 76

40 817

16 056,25

Water Budgets

1. Recap of Groundwater 1.0

2. What is required for a water budget?

3. How will water budgets be used in GSPs?

482

2 242,36

13841

4. Factors to consider

136

53 520,83

909,95 5. Practice!

33 735,0

"Conceptual" Water Budget

Definition: Accounts for all the water that flows into and out of a project area and accounts for the change of water storage with time

Goal: calculate the <u>*change*</u> in the volume of water in storage underground

Bonus: can be used by water managers to explore different water management "scenarios"

Goal: calculate the <u>change</u> in the volume of water in storage underground

Bonus: can be used by water managers to explore different water management "scenarios"

Limitation: accuracy and reliability depends on scale of data, area of interest, etc.

(garbage in \rightarrow garbage out)

CAN

- describe IF overdraft exists
- WHEN a basin went into overdraft

CANNOT

- provide detailed information on the state of aquifers
- give location-specific groundwater levels
- pinpoint responsible parties
- define extent of undesirable consequences

CAN

describe IF overdraft exists
WHEN a basin went into overdraft

CANNOT

- provide detailed information on the state of aquifers
- give location-specific groundwater levels
- pinpoint responsible parties
- define extent of undesirable consequences

Water Budgets

1. Recap of Groundwater 1.0

2. What is required for a water budget?

3. How will water budgets be used in GSPs?

484

2 242,36

15 46

13841

4. Factors to consider

136

53 520,83

909,95 5. Practice!

33 735,0

What's required?

Water Budgets

1. Recap of Groundwater 1.0

2. What is required for a water budget?

3. How will water budgets be used in GSPs?

484

2 242,36

15.46

13841

4. Factors to consider

136

53 520,83

909,95 5. Practice!

33 735,0

1. Track water

- 2. Prioritize resources
- 3. Improve communication
- 4. Estimate vs. measure
- 5. Understand surface groundwater
- 6. Find balance
- 7. Gauge impact of people, plants, weather, etc.
- 8. Decide on sustainable pumping rates

1. Track water

- 2. Prioritize resources
- 3. Improve communication
- 4. Estimate vs. measure
- 5. Understand surface groundwater
- 6. Find balance
- 7. Gauge impact of people, plants, weather, etc.
- 8. Decide on sustainable pumping rates

- 1. Track water
- 2. Prioritize resources
- 3. Improve communication
- 4. Estimate vs. measure
- 5. Understand surface groundwater
- 6. Find balance
- 7. Gauge impact of people, plants, weather, etc.
- 8. Decide on sustainable pumping rates

- 1. Track water
- 2. Prioritize resources
- 3. Improve communication
- 4. Estimate vs. measure
- 5. Understand surface groundwater
- 6. Find balance
- 7. Gauge impact of people, plants, weather, etc.
- 8. Decide on sustainable pumping rates

- 1. Track water
- 2. Prioritize resources
- 3. Improve communication
- 4. Estimate vs. measure
- 5. Understand surface groundwater
- 6. Find balance
- 7. Gauge impact of people, plants, weather, etc.
- 8. Decide on sustainable pumping rates

- 1. Track water
- 2. Prioritize resources
- 3. Improve communication
- 4. Estimate vs. measure
- 5. Understand surface groundwater

6. Find balance

Gauge impact of people, plants, weather, etc.
 Decide on sustainable pumping rates

- 1. Track water
- 2. Prioritize resources
- 3. Improve communication
- 4. Estimate vs. measure
- 5. Understand surface groundwater
- 6. Find balance
- 7. Gauge impact of people, plants, weather, etc.

8. Decide on sustainable pumping rates

- 1. Track water
- 2. Prioritize resources
- 3. Improve communication
- 4. Estimate vs. measure
- 5. Understand surface groundwater
- 6. Find balance
- 7. Gauge impact of people, plants, weather, etc.
- 8. Decide on sustainable pumping rates

*8. Decide on sustainable pumping rates

Must be careful when well-being of a community is impacted

for example: pumping rate determines acres in production

- Strawberries \$1.83 billion
- Pistachios \$1.5 billion
- Tomatoes \$1.33 billion
- Walnuts \$1.24 billion
- Oranges \$826 million

(CDFA, 2017)

Water Budgets

1. Recap of Groundwater 1.0

2. What is required for a water budget?

3. How will water budgets be used in GSPs?

482

2 242,36

15.46

1384

4. Factors to consider

136

53 520,83

33 735,0

Historic	Current	Projected

	•	•
н	ISto	Dric
•••		

Current

Projected

What happened in the past?

Go back as far as you can

Impact of droughts and floods

Changes in technology

Historic	Current	Projected

What is happening now?

Measure vs. estimating water use

Relationship with surface water

Current

What will happen in the future?

More people

Different crops

New climate

Historic	Current	Projected

For any water budget....

- Uncertainty always matters!!!
 If results are reported in a <u>range</u> so you can prepare for extremes
- Groundwater storage changes <u>slowly</u> and can progress over decades as streams and groundwater systems try to reach equilibrium

Native vs. non-native water

	Definition	Examples
Native	Percolates into the sub-basin from natural sources	Rainfall, natural stream bed flows, mountain sub-surface inflow
Non-native	Percolates into the sub-basin	Captured floodwater, imported water (Central Valley Project), appropriated water, conveyance losses

Questions

Water Budgets

1. Recap of Groundwater 1.0

2. What is required for a water budget?

3. How will water budgets be used in GSPs?

484

2 242,36

15.46

1384

4. Factors to consider

136

53 520,83

909,95 5. Practice!

33 735,0

Practice

Project Specifications

• Project Boundary: Make Belief Groundwater Basin

Data
Evapotranspiration
Crop Coefficients
Land Use
Application Efficiency
Precipitation
Stream Flow
City of Ukiah (Water)
RRFC Water Sales
Water Districts (Water)
Private Water Users
Tributary Influence
Evaporation
Specific Yield
Aquifer Storage
Groundwater Elevation Data

Methods

■ Lateral Gain (AF) ■ Lateral Loss (AF)

34

Practice

Project Specifications

- Time Period: 1991 2015
- Project Boundary: Make Belief Groundwater Basin
 - Consists of This Valley& That Valley

Conceptual model

Surface Water Mass Balance

 $\Delta Storage_t^{SW} = [Inflow_t^{SW} - Outflow_t^{SW}] \Delta t$

Since there is no reservoir, $\Delta Storage_{\square}^{SW} = 0$ and therefore, $Inflow_t^{SW} = Outflow_t^{SW}$

 $Inflow_t^{SW} = Q_t^{WF} + Q_t^{EF} + Return_t^{SW} + Return_t^{GW} + \frac{Gains_t^{SW}}{Gains_t^{SW}}$

Outflow_t^{SW} =
$$Q_t^{Hopland} + \sum_{i=1}^{i=1} User_t^{SW,i} + Losses_t^{SW}$$

$$\begin{bmatrix} Q_t^{Hopland} + \sum_{i=1}^{i=1} User_t^{SW,i} \end{bmatrix} - \begin{bmatrix} Q_t^{WF} + Q_t^{EF} + Return_t^{SW} + Return_t^{GW} \end{bmatrix}$$
$$= \frac{Gains_t^{SW}}{-Losses_t^{SW}}$$

Surface Water Mass Balance

Groundwater Mass Balance

 $\Delta Storage_t^{GW} = [Inflow_t^{GW} - Outflow_t^{GW}]\Delta t$

Since we have an aquifer,, $\Delta Storage_t^{GW} \neq 0$ and therefore,

 $\Delta Storage_t^{GW} = [Inflow_t^{GW} - Outflow_t^{GW}]\Delta t$

 $Inflow_{t}^{GW} = Recharge_{t}^{Precipitation} + Recharge_{t}^{Irrigation} + Losses_{t}^{SW} + Recharge_{t}^{Percolation Ponds} + Recharge_{t}^{Tributary} + Gains_{t}^{GW}$

$$Outflow_t^{GW} = \sum_{i=1}^{i=1} AW_t^{GW,crop\,k} + Gains_t^{SW} + GE_t^{Municipal} + Losses_t^{GW}$$

 $\Delta Storage_{t}^{GW} - \left[Recharge_{t}^{Precipitation} + Recharge_{t}^{Irrigation} + Losses_{t}^{SW} + Recharge_{t}^{Percolation Ponds} + Recharge_{t}^{Tributary}\right] + \left[\sum_{i=1}^{i=1} AW_{t}^{GW, crop k} + Gains_{t}^{SW} + GE_{t}^{Municipal}\right] = C_{t}^{SW}$

$$Gains_t^{GW} - Losses_t^{GW}$$

Groundwater Mass Balance

Data & Sources

Data	Source
Evapotranspiration	CIMIS
Crop Coefficients	Schwankl et al. (2010)
Land Use	Chuck Morse, Agriculture Commissioner
Application Efficiency	Lewis et al. (2008)
Precipitation	CIMIS & CDEC
Stream Flow	USGS
City of Ukiah (Water)	Sean White , Director of Water & Sewer
RRFC Water Sales	Tamara Alaniz, RRFC General Manager
Water Districts (Water)	Bill Koehler & David Redding, General Managers
Private Water Users	SWRCB
Tributary Influence	Flint et al. (2015)
Evaporation	CDEC
Specific Yield	Bulletin 118
Aquifer Storage	Bulletin 118
Groundwater Elevation Data	DWR

There are SW-GW Interactions • The River is a gaining river from Nov to Jun • (+ 18,952 AF/year) Tributary Stream Flow Tributary Unsaturated zone Water table Saturated zone https://www.e-education.psu.edu/earth111/node/938 Surface -30 -40-50 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

- The River is a losing river from July to Oct (-393 AF/year)
- Releases from the Lake may recharge the groundwater

There is a fluctuation of groundwater storage with season, but overall the groundwater **storage is stable**

There are some inconsistencies in the long term water table data, and some questionable data for some years (year 2003 & 2009)

■ Lateral Gain (AF) ■ Lateral Loss (AF)

Groundwater lateral movement (losses) occur between basins

Conclusions

Make Belief Groundwater Basin is not in overdraft

There are surface water/groundwater interactions River is a **gaining river** Nov-Jun (+ 18,952 AF/y) River is a **losing river** July-Oct (- 393 AF/y)

There is connectivity between the groundwater basin and nearby valley

Recommendations to GSA

- 1. Maintain surface water/groundwater interactions
 - Protect & enhance recharge zones
 - Protect the upper watershed (tributaries)
 - Avoid an increase in groundwater pumping
- 2. Create protocols for continual water resources management (Good record keeping!!!)

3. Create protocols for continual monitoring of the groundwater tables, streamflow at tributaries, groundwater quality, & land subsidence

4. Placement of a streamflow gauge North of County Water District to improve future water budget calculations

Questions